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Outline

e  Motivation
o Explosion of biomedical data (genomic, clinical, imaging, etc.)
° Need for scalable, generalizable Al tools
e \What Are Foundation Models?
° Difference from traditional ML models
o Definition and key characteristics (pre-training, fine-tuning, complexity, architecture)
° Foundation models
e  Future Directions

® Multimodal Foundation Models



Motivation

e Biomedical research is undergoing a data revolution (the volume and complexity of
biomedical information are growing exponentially)
o  Vast repositories of clinical records
o Medical literature
o  High-throughput sequencing
o Imaging
o Multi-omics data
e How can we make sense of such diverse and unstructured data?
e How do we build models that generalize across tasks, adapt to new problems with

minimal supervision, and support real-world decision-making?
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Traditional ML

e Approach:
o  Requires extensive manual feature engineering.
o  Often applies algorithms like Random Forests, SVMs, or logistic regression.
O

Each model is trained task-specifically—e.g., disease classification or gene expression prediction.

e Challenges:

o

Multi-omics data is heterogeneous (e.g., genomics, transcriptomics, proteomics), which makes
integration non-trivial.

Traditional models struggle with high dimensionality and small sample sizes typical in omics
datasets.

Requires significant domain expertise for data preprocessing and interpretation.



Foundation Models

e Foundation models are identified as one of the most general categories of generative Al.

e Represents a category of Al models that undergo pre-training on extensive datasets
spanning diverse domains.

e The acquired knowledge of these models can be seamlessly applied with minimal
supplementary training efforts

® Fine-tuning



Foundation models

e Approach:
o  Pretrained on massive datasets across various tasks (e.g., genomic sequences, epigenetic signals).

o  Often use transformer-based architectures (like BERT, GPT, or their bio-specific variants:
DNABERT, HyenaDNA, etc.).

e Characteristics:
o  Self-supervised learning enables learning rich representations without labelled data.
o  Better at capturing long-range dependencies in sequences (important in genomics).
o  Canintegrate multi-modal inputs (e.g., DNA sequences + expression data + clinical metadata).



Advantages of Foundation models

e Transfer learning

o Models pretrained on large datasets can be fine-tuned with small omics datasets, improving
performance.

e Reduced feature engineering
o Automatically learn representations, reducing the need for manual preprocessing.
® Better generalization
o Perform well across tasks (e.g., disease prediction, drug response) with minimal additional training.
® Scalability
o Capable of handling vast and complex multi-omics datasets.
® Multi-modal integration
o FMs can handle data from different omics layers more naturally.
® Interpretability
o Some newer foundation models provide attention maps or feature attributions for biological insight.
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Pre-training strategies

Masked Language Modelling (MLM) / Masked
Sequence Modelling Virtual

T

e How it works: Randomly mask portions of
a DNA sequence and train the model to

predict the masked bases. Masked Language Modeling

® Applications: Learning representations of
DNA/RNA sequences that generalize well

to downstream tasks like promoter T T T T T
classification or SNP impact prediction. ;
pactP | am a MASK Assistant
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Next Token Prediction / Causal Language Modelling

A simple example of autoregressive
next token prediction.
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e How it works: Predict the next
nucleotide in a sequence, learning
dependencies in a unidirectional
manner.

e Use case: Less common than MLM
but still explored in some
autoregressive sequence generation
tasks
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[A[C|G[TIA[C[G[T|

Causal

ppada Language
Modelling

- [AC[[TACET]

(Single Nucleotide Tokens)




Additional Pre-training strategies

e Masked Methylation, histone marks (chemical modifications to histone proteins that
affect chromatin structure and gene expression)
e Masked Hi-C submatrices (High-throughput chromosome conformation capture)
o Hi-C measures the frequency at which two DNA fragments physically associate in 3D space,
linking chromosomal structure directly to the genomic sequence
e Multi-modal and Multi-task Pre-training

o Models are pre-trained on multiple data modalities (e.g., DNA + histone marks + chromatin
accessibility) or tasks (predicting chromatin accessibility and TF binding simultaneously).



Downstream task for fine-tuning foundation
models

Enhancer Prediction

Goal: Identify DNA regions that act as enhancers (regulatory sequences that boost transcription of
target genes).

Challenge: Enhancers are not near the genes they regulate, can act in a tissue-specific manner, and
lack a fixed sequence pattern.

Input Data: DNA sequence, chromatin accessibility (e.g., ATAC-seq), histone modifications,
transcription factor binding (ChlP-seq).

Output: Probability that a region is an enhancer.



Downstream task for fine-tuning foundation
models

Promoter Prediction

Goal: Detect promoter regions — sequences upstream of genes where transcription is initiated.
Challenge: Promoters vary in sequence and may not have clear motifs.
Input Data: DNA sequence, transcription start sites (TSS), CpG islands, histone marks.

Output: Prediction of whether a given region is a promoter.



Downstream task for fine-tuning foundation
models

Epigenetic Mark Prediction

Goal: Predict presence of specific epigenetic modifications (like DNA methylation or histone
modifications).

Challenge: Epigenetic states are cell-type-specific and context-dependent.
Input Data: DNA sequence, chromatin features, 3D genome organization, known epigenetic profiles.

Output: Signal intensity or presence/absence of specific marks at genomic locations.



Downstream task for fine-tuning foundation
models

Splice Site Prediction

Goal: Identify where RNA splicing occurs — the start (donor site) and end (acceptor site) of introns.
Challenge: Splice sites have some conserved motifs (e.g., GT...AG), but many false positives exist.
Input Data: DNA/RNA sequence, conservation data, RNA-seq evidence.

Output: Prediction of true splice sites and their likelihood.



Downstream task for fine-tuning foundation
models

Regulatory Element Prediction

Goal: Broader task of identifying any regulatory DNA elements: enhancers, silencers, insulators,
promoters, etc.

Challenge: Elements have diverse and overlapping features, and regulatory logic is complex.
Input Data: Sequence, chromatin data, transcription factor binding.

Output: Classification of genomic regions into regulatory types.



Downstream task for fine-tuning foundation
models

Chromatin Profile Prediction

Goal: Predict the pattern of chromatin accessibility or marks (e.g., from DNase-seq, ATAC-seq, or
histone modifications).

Challenge: Chromatin states depend on the cell type, developmental stage, and environment.
Input Data: DNA sequence, context from similar cell types.

Output: Signal tracks showing accessibility or histone marks across the genome.



Downstream task for fine-tuning foundation
models

Species Classification

Goal: Identify the species an unknown DNA, RNA, or protein sequence belongs to.

Challenge: Requires discriminating between similar species, horizontal gene transfer, or
contamination.

Input Data: Sequence data (e.g., rRNA, whole-genome, k-mers).

Output: Predicted species or taxonomic classification.



DNABERT

Ji, Y., Zhou, Z., & Dai, Q. (2021). DNABERT: pre-trained Bidirectional Encoder Representations from
Transformers model for DNA-language in genome. BioRxiv, 2020-11.
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o

Architecture Transformer (encoder only)

Model Complexity 110 million parameters

Pre-training Approach Masked Language Modelling

Training Data Human reference genome (Hg38.p13)

Downstream Tasks Promoter region prediction, TF binding site identification, functional
genetic variant identification, enhancer prediction, genomic variant annotation...

Results & Interpretation

o Achieved high accuracy in predicting promoter regions (99.9%)),
o splice sites (donor accuracy: 0.9491, acceptor accuracy: 0.9345) 8,

o Demonstrates the ability to capture global and transferable understanding of genomic DNA
sequences.



DNABERT?2

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana V Davuluri, Han Liu. DNABERT-2: Efficient
Foundation Model and Benchmark For Multi-Species Genome. In ICLR 2024

aOkhowobd-~

Architecture: Transformer (encoder only)

Model Complexity: 117 million parameters

Pre-training Approach: Masked Language Modelling

Training Data: Human genome, and multi-species data

Downstream Tasks: Core/proximal promoter prediction , epigenetic mark prediction, TF
binding site prediction, splice site prediction, enhancer prediction

Results & Interpretation:

o Improved computational efficiency
o Ability to handle longer input sequences
o Consistent performance across human genome-related tasks.



GROVER

Sanabria, M., Hirsch, J., Joubert, P.M. et al. DNA language model GROVER learns sequence context in

the human genome. Nat Mach Intell 6, 911-923 (2024)
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Architecture: Transformer (encoder only) — byte-pair encoding

Model Complexity: 1.2 billion parameters

Pre-training Approach: Masked Language Modelling, Next-k-mer prediction
Training Data: Eukaryotic DNA (386B bp) from RefSeq database, human genome
Downstream Tasks: Genomic function prediction, promoter identification, protein
binding site identification, epigenetic information identification, protein-DNA binding
prediction

Results & Interpretation

o Learns biological and epigenetic information directly from DNA sequence.
o Can generate protein-coding sequences.

o Exceeds other models' performance on promoter identification and protein-DNA binding.



Nucleotide Transformer

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J. et al. Nucleotide Transformer: building and
evaluating robust foundation models for human genomics. Nat Methods 22, 287-297 (2025)
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Architecture: Transformer (encoder only)
Model Complexity: 50 million to 2.5 billion parameters
Pre-training Approach: Masked Language Modelling
Training Data: Thousands of human genomes (3,202) and hundreds of genomes from
various other species (850)
Downstream Tasks: Molecular phenotype prediction, enhancer prediction, promoter
prediction, epigenetic mark prediction, splice site prediction, genetic variant prioritization
Results & Interpretation:

o Yields context-specific representations of nucleotide sequences.

o Achieves accurate predictions with limited task-specific data.
o Excels in epigenetic modification detection.



HyenaDNA

Nguyen, E., Poli, M., Ré, C., & Heckerman, D. (2023). HyenaDNA: Long-Range Genomic
Sequence Modelling at Single Nucleotide Resolution. In NeurIlPS 2023
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Architecture: Hyena-CNN (decoder only)

Model Complexity: 1.6 million parameters

Pre-training Approach: Next token prediction

Training Data: Human reference genome

Downstream Tasks: Enhancer prediction, promoter prediction, epigenetic mark prediction,

splice site prediction, regulatory element prediction, chromatin profile prediction, species
classification

Results & Interpretation:
o Models long-range DNA interactions at single-nucleotide resolution (1 million tokens context length)
o Achieves state-of-the-art performance on various genomic benchmarks with fewer parameters and less

pre-training data than other models.
o Excels in runtime scalability and handling long input sequences.



Evo

Nguyen E, Poli M, Durrant MG, Kang B, Katrekar D, Li DB, Bartie LJ, Thomas AW, King SH, Brixi G,
Sullivan J, Ng MY, Lewis A, Lou A, Ermon S, Baccus SA, Hernandez-Boussard T, Ré C, Hsu PD, Hie BL.
Sequence modeling and design from molecular to genome scale with Evo. Science. 2024

Architecture: StripedHyena (decoder only)
Model Complexity: 7 billion parameters
Pre-training Approach: Next token prediction
Training Data: Prokaryotic and eukaryotic genomes (Evo 2)
Downstream Tasks: Essential gene prediction, prokaryotic promoter prediction,
zero-shot protein function prediction
Results & Interpretation
o Generalizes across DNA, RNA, and proteins.
o Can generate sequences exceeding one megabase.
o Achieves competitive zero-shot performance on function prediction.

7. Multimodal Approach

akhobd-=
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MethyIGPT

Ying K, Song J, Cui H, Zhang Y, Li S, Chen X, Liu H, Eames A, McCartney DL, Marioni RE, Poganik JR,
Mogqri M, Wang B, Gladyshev VN. MethylGPT: a foundation model for the DNA methylome. bioRxiv.
2024

Architecture: Transformer

Model Complexity: Varies (tiny: 3M, small: 7M, medium: 15M parameters)

Pre-training Approach: Masked Language Modelling

Training Data: 226,555 human DNA methylation profiles from 5,281 datasets (EWAS

Data Hub and Clockbase)

5. Downstream Tasks: DNA methylation pattern modelling , disease risk prediction,
therapeutic effect evaluation, age prediction, mortality prediction

6. Results & Interpretation:

o Captures biologically meaningful age-dependent changes in methylation regulation.
o Resilient to missing data.

hoON=



CpGPT

Lucas Paulo de Lima Camillo, Raghav Sehgal, Jenel Armstrong, Albert T. Higgins-Chen, Steve
Horvath, Bo Wang. CpGPT: a Foundation Model for DNA Methylation. bioRxiv. 2024
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Architecture: Transformer architecture

Model Complexity: Not explicitly stated

Pre-training Approach: Multi-task learning (beta value prediction)

Training Data: Over 1,500 DNA methylation datasets, encompassing more than 100,000
samples from diverse tissues and conditions

Downstream Tasks: Imputation and reconstruction of genome-wide methylation profiles ,

chronological age prediction, mortality risk assessment, morbidity assessments, cancer
prediction and classification

Results & Interpretation:

o Outperforms specialized models in aging-related tasks.

o Highly adaptable across different methylation platforms and tissue types.
o Achieved strong performance in the Biomarkers of Aging Challenge.

]

Identifies CpG islands and chromatin states without supervision.



Hi-C Foundation

Wang X, Zhang Y, Ray S, Jha A, Fang T, Hang S, Doulatov S, Noble WS, Wang S. A generalizable Hi-C
foundation model for chromatin architecture, single-cell and multi-omics analysis across species.
bioRxiv [Preprint]. 2024

Architecture: CNN-based

Model Complexity: No explicitly stated

Pre-training Approach: MLM (Self-supervised learning on masked Hi-C submatrices)

Training Data: Hundreds of Hi-C assays, more than 118 million contact matrix

submatrices

5. Downstream Tasks: Resolution enhancement, loop detection, epigenomic activity
prediction, single-cell Hi-C data analysis

6. Results & Interpretation

o Significant advancement in the field of 3D genomics
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Conclusion

° Explosion of biomedical data necessitates models that can handle heterogeneous, high-dimensional, and
unstructured data like DNA sequences, clinical records, imaging, and more.

° Foundation models, pretrained on vast datasets using self-supervised strategies (e.g. masked language
modeling), offer transfer learning, reduced need for feature engineering, better generalization, and multimodal
data integration compared to traditional ML.

° State-of-the-art models like DNABERT, GROVER, Nucleotide Transformer, HyenaDNA, Evo, MethylGPT,
CpGPT, and Hi-C Foundation demonstrate strong performance across diverse tasks: promoter/enhancer
prediction, splice site recognition, chromatin structure analysis, species classification, and methylation-based
aging predictions.

° These models are more interpretable, more scalable, and better equipped to enable real-world applications in
genomics, disease risk prediction, drug discovery, and personalized medicine.
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