

Bridging Borders: Advancing Translational Oncology Research through

EuroCC4SEE Workshop, May 20^{th,} 2025

Stefan Milosevic, University of Cambridge | BIO4 Campus Belgrade

Why Borders Still Exist in Cancer Research

Cancer doesn't care about borders. So why do our research systems?

Translational oncology today is fragmented:

National borders limit clinical collaborations

S

01 02 03 04

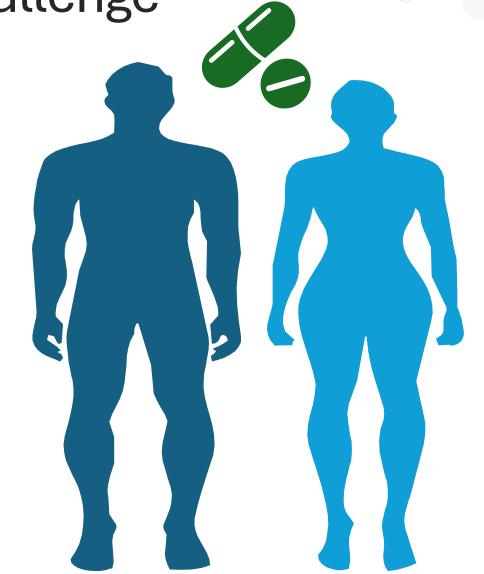
Institutional silos slow down data integration

Underlining:
Result: Up to 70%
of patients fail firstline therapies. Over
85% of clinical
trials miss their
endpoints

Regulatory systems aren't built for Al

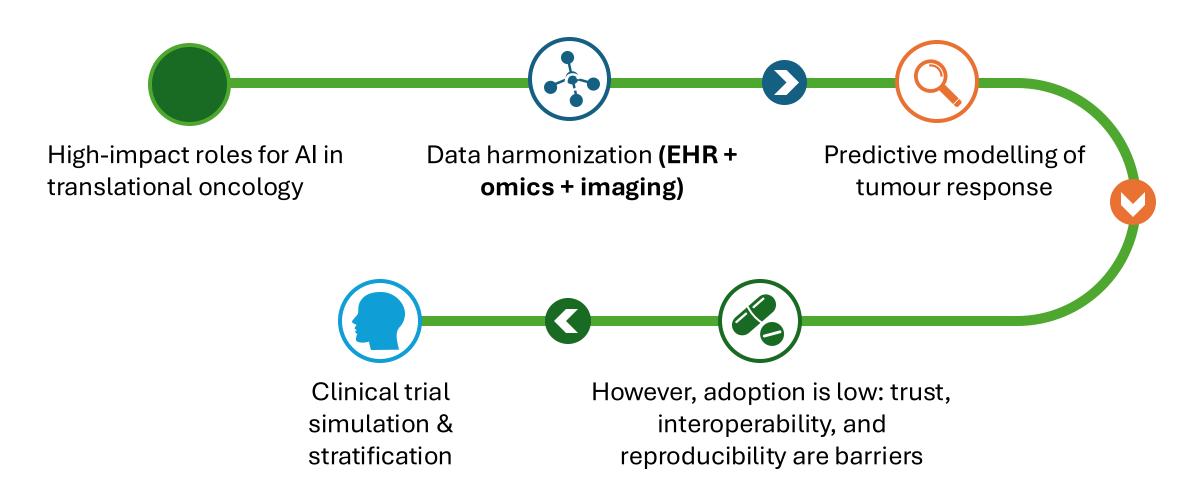
Source: NIH, IQVIA

From Bench to Bedside: The Translational Oncology Challenge


Translational oncology means converting lab breakthroughs into clinical treatments

But there's a "data chasm" between discovery and real-world deployment

Genomics ≠ Clinical trials ≠ Imaging


≠ Real-world outcomes

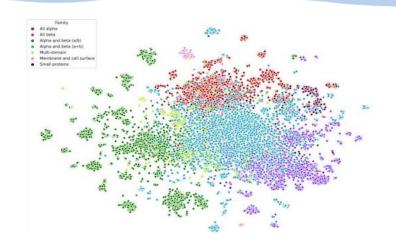
Solution: What's missing? A common computational language across modalities and institutions

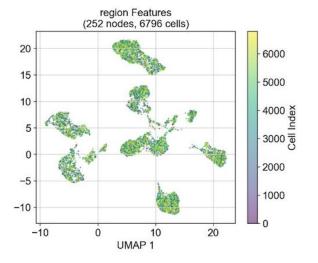
Al as the Bridge: Not a Silver Bullet, but a Shared Protocol

Al helps navigate complexity, **not replace** clinicians or researchers

scMultiGraph: single-cell Multiomic Modelling with Message Passing Graph Neural Networks

Problem?


 Genomics data are often analyzed in silos-chromatin accessibility and gene expression separately


Result:

- Amongst the first of the graph neural network models to connect multiomic data at single-cell resolution
- Achieved high predictive accuracy across a set of variable genes

Broader implication:

 Modelling regulatory gene networks dynamically- essential for understanding therapy response and disease mechanisms

From scMultiGraph to Real-World AI Barriers

STANDARDIZATION

My thesis clarified:

Lack of **standardized architectures** for multiomic data integration

Limited access to highquality, diverse training data

Disconnection between academic modelling and clinical validation

Next... How do we deploy this in real-world cancer settings-ethically and scale it properly?

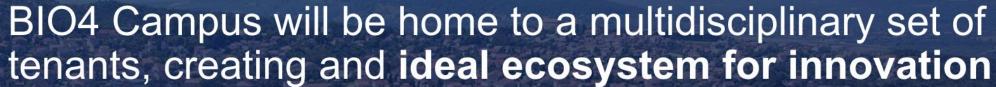
УНИВЕРЗИТЕТ У БЕОГРАДУ

МЕДИЦИНСКИ

ФАКУЛТЕТ

UNIVERSITY OF BELGRADE

FACULTY OF


MEDICINE

BRaIn-MOD (Brain Response and Infiltration Modeling

through Omics and Dynamics): Digital Twin Modeling of

Glioma Evolution and Therapy Response

Oncology Across BIO4 - A Shared Domain

Oncology is not a separate pillar at BIO4; rather, it's a cross-cutting domain worked on across multiple tenant institutions

Key Projects & BIO4 Tenants

- IMGGE
 - DNA repair and genome stability (BRCA2-related) Targeting vulnerabilities in HR-deficient cancers
- Faculty of Medicine + IORS (Institute for Oncology and Radiology of Serbia)
 - Biomarker discovery in rectal cancer Personalized treatment pathways through EU collaboration
- IMI
 - Anti-inflammatory diets during breast cancer therapy Linking nutrition, clinical outcomes, and ML models
- IBISS + Faculty of Chemistry
 Novel hybrid anticancer compounds
 Designed to reduce toxicity and overcome drug resistance

BIO4 enables these projects to intersect through AI and

infrastructure, without

creating artificial silos

ASCO 2025 -Serbia's Presence in Oncology & AI

I will represent BIO4 Campus at this year's ASCO Annual Meeting 2025

Oncology projects from our BIO4 tenants

Al use cases in immunology, rare disease modelling, and drug delivery

Objective:
Position Serbia
not just as a
consumer of
oncology AI, but
as a co-developer
and global partner

Final Message - Research Without Borders

We don't need more data. We need more connection.

Translational oncology requires:

- -Shared purpose across institutions
- -Al tools that are co-designed for use-case purposes, not copy-pasted
- -Platforms that respect institutional differences but enable common learning

Let's move from bordered science to bridged ecosystems